MATH Math 162A Review: Inner Product

1	Let r u	be	non-zero	vectors	Prove	that
т.	Let x, y	ne	HOH-FELO	vectors.	1 10/6	unau

$$\left\| \frac{x}{\|x\|^2} - \frac{y}{\|y\|^2} \right\| = \frac{\|x - y\|}{\|x\| \cdot \|y\|}.$$

Solution:	

2.	Prove the	e Cauchy-Schwarz	inequality	of the	following	form
----	-----------	------------------	------------	--------	-----------	------

$$\left| \int_0^1 f(x)g(x)dx \right|^2 \le \int_0^1 f(x)^2 dx \cdot \int_0^1 g(x)^2 dx.$$

(historic note: should be more fair to call it "Cauchy-Bunyakovsky-Schwarz inequality". Cauchy proved the version for sums, and Bunyakovsky proved the above version many years prior to Schwarz.)

Solution:	